

RISK & MCS

Dr Jessica Ford

Senior Research Scientist

CSIRO Data61

Who we are Australia's national science agency

One of the world's largest multidisciplinary science and technology organisations

5,600+ dedicated people working across 53 sites globally

State-of-the-art research infrastructure

550 international collaborators in 69 countries

Solving the greatest challenges through innovative science and technology

Research and capability relevant to food systems

Agriculture and food

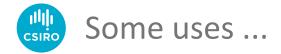
Environment

Oceans and fisheries

Energy

Biosecurity

Digital and data solutions



Human health & nutrition

Definition	Reference		
The objectified uncertainty regarding the occurrence of an undesirable event	Willett (1901)		
Measurable uncertainty	Knight (1921)		
A measure of the probability and severity of adverse effects	Lowrance (1976)		
The probability that a consequence will occur	Rasmussen (1981)		
The probability of harm	Wachbroit (1991)		
The magnitude of an adverse event multiplied by the likelihood of its occur-	Mullin and Bertrand (1998)		
rence			
The combination of the magnitude of an adverse event and the probability	Environmental Risk Manage-		
of its occurrence	ment Authority (1999)		
The probability of future loss	Byrd and Cothern (2000)		
The combination of the probability of an event and its consequences	ISO/IEC (2002)		
The probability of occurrence of an undesired event	van Straalen (2002)		
The chance, within a time frame, of an adverse event with specific conse-	Burgman (2005)		
quences			
The probability of an unwanted outcome or consequence occurring	Wooldridge (2008)		
The effect of uncertainty on objectives	ISO (2009)		
An objective measure of the product of the likelihood and consequences of	World Health Organisation		

RISK = The <u>**Probability</u> of <u>Loss</u></u>**

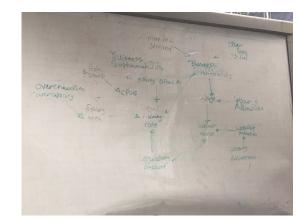
"The Index does not estimate the volume of IUU catch but provides the basis for assessing IUU fishing risk across 152 individual coastal States, based on a suite of 40 indicators that are periodically re-sampled .."

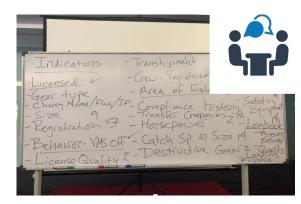
"If we, the traditional fishermen, violate the MOU Box borders, the risk is that our boats would be caught and burned in the middle of the sea. That's the risk .."

"Results suggest that a country's risk of illegal fishing is positively related to the number of commercially significant species found within its territorial waters and its proximity to known ports of convenience. .."


"That is 'in seeking to benefit themselves, offenders do not always succeed in making the best decision because of the risk and uncertainty involved' .."

Why MCS and Risk $\ref{eq: constraint}$




- Know your problem, know your context
- What is the problem?
- What possible adverse outcomes should be investigated?
- What are the pathways by which they might occur?
- Opportunity to seek opinions of (diverse) stakeholders

What do we mean by Indicators

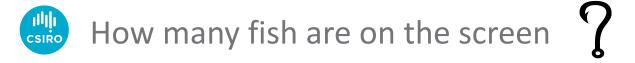
- Help identify what is important
- Aids communicating what is important
- What is measurable?
- What data is missing based on measurable indicators?
- What is important?
- How to communicate and convey convincingly to decision makers.

- Underlying conceptual model
- Measurable & identifiable endpoints
- Repeatable
- Assumptions and uncertainty acknowledged
- Decision criteria
- Relevant

Usually Predictive – performed BEFORE the expected issue

But can also be Retrospective - subsequent to the issue to identify the pathway

A few important considerations to keep in mind


Where does Uncertainty creep in?

- Collecting data
- Analysing data
- Interpreting/applying outcomes

Forms of uncertainty

- Human behavior
- Sampling error
- Mis-reporting
- Variation Environment, ecological, demographic

We can't measure **TRUTH** There is always **NOISE** This is where we get **UNCERTAINTY**

Consequences Likelihood	Negligible	Low	Medium	High
Negligible	Negligible	Negligible	Low	Medium
Low	Negligible	Low	Medium	Medium
Medium	Low	Medium	Medium	High
High	Medium	Medium	High	High

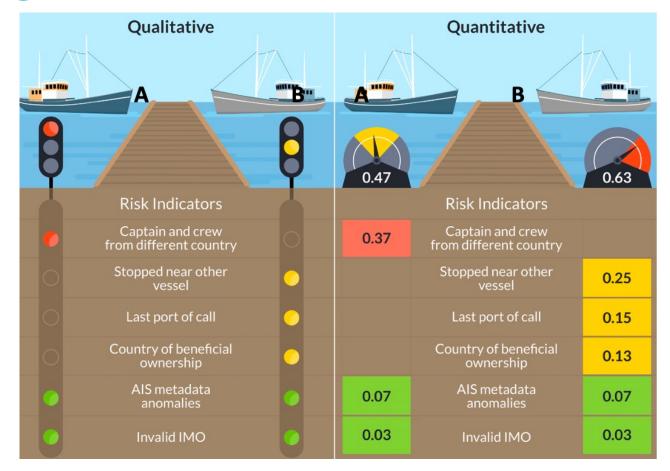
Qualitative

Risk predictions on an "ordinal" scale – "high", "medium", "low" / "negligible"

Typically presented in a risk matrix, easy to perform and communicate Predictions cannot be compared to outcomes

Semi-quantitative

Risk predictions on an "interval" scale – 1,2,3,... or 10,20,30...


Typically by scoring risk criteria, easy to perform and communicate Difficult to compare predictions with outcomes (scale is arbitrary)

Quantitative

Risk Predictions on a "ratio" scale – e.g. expected loss Typically involves modelling and expert elicitation Predictions can be compared to outcomes

Qualitative versus Quantitative

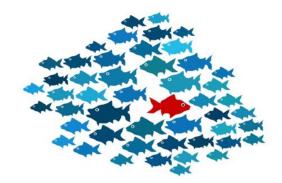
Monitor your assessment

Review your models and indicators

Update as needed

Fully understand the problem, and identify priorities

Informed decision-making tool


Identify cost-effective resource relevant management options

Many different roles are constantly making many decisions

Start simple, build from there

- Get experts together
- Know your problem
- Understand the pathways
- Have clear and measurable endpoints know your data
- Understand scope and uncertainty
- Use rigorous techniques
- Make predictions that can be tested

Thank you

Dr Jessica Ford

Senior Research Scientist

CSIRO Data61 E Jessica.Ford@csiro.au

T +61 439 678 436

CSIRO Marine Laboratories **muwinina country** 3 Castray Esplanade, Hobart 7004 Tasmania, Australia

